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ABSTRACT
The work presented within this paper deals with the crucial hydraulic and morphologic 

processes at confluences of steep torrent channels and receiving streams in case of exception-

al extreme events. 2d numerical modelling is accomplished with the BASEMENT software for 

the confluence of Schnannerbach torrent channel and Rosanna River. There, the damage 

causing flood event from August 2005 is reconstructed. Processes of bedload deposition, 

flooding and overbank sedimentation, as they could be observed in August 2005 and 

analysed within a physical model at the University of Innsbruck, are simulated. The model-

ling results provide a valuable insight into the processes being crucial for the damages on the 

adjacent flood plain. Compared to the laboratory analysis, which delivers a very reliable and 

vivid process representation but is restricted to a rather small spatial extent, numerical 

modelling allows for an analysis of bedload transport and deposition further downstream in 

the Rosanna River and backwater effects upstream.
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INTRODUCTION
Experiences from recent torrential hazard events in the Alps reveal that confluences of steep 

tributaries and their receiving waters are often critical spots concerning flood risk. Due to 

massive supply of sediments from the torrent catchments and insufficient transport capacities 

in the receiving streams, processes of regressive aggradation appear, possibly leading to over- 

bank flooding and sedimentation on the alluvial fan. In this respect, physical scale modelling 

of bedload transport processes proved to be a suitable tool for optimizing mitigation measures 

at confluence zones (Gems et al. 2014). 

However, to accurately reproduce natural conditions, the scale, and with it the similarity law, 

have to be defined carefully. In case of bedload pulses entering receiving waters, experimental 

modelling is typically restricted to the proximity of the confluence zone (Gems et al., 2014). 

In contrast, hydraulic and morphologic responses of the receiving streams extend far in 

upstream and downstream directions. The optimization of geometric patterns at the conflu-



320  |  INTERPRAEVENT 2016 – Conference Proceedings

ence zone yields a significant onward movement of sediment (Gems et al., 2014), but critical 

spots, featuring aggradation and flooding, may appear further downstream in the receiving 

water. In this regard, the area of risk is rather spacious and its extent strongly depends on the 

bedload transport capacity of the whole system rather than at the confluence only. In order  

to assess their impact on flood safety and to determine areas of risk, the application of a 

numerical tool is suggested to be an adequate method, since it easily copes with the large 

areal extent of the area of interest.

METHODS
General Remarks

Numerical simulations of bedload transport in steep mountain streams are commonly 

accomplished by means of 1d hydrodynamic approaches. As long as water flow is laterally 

confined, these simplifications are of minor effects. In contrast, fluvial fans typically feature 

convex terrains with multiple flow paths in case of overbank flooding. Additionally, conflu-

ence zones exhibit complex flow patterns, since water enters from different directions.  

In order to account for these conditions, at least a 2d hydrodynamic model needs to be applied 

for the simulation of hydraulic and involved bedload transport processes. 

However, the set of equations in 2d hydrodynamic models is rather sophisticated (e.g. Vetsch 

et al., 2011) and its applicability to high gradient streams with huge sediment loads is hardly 

tested so far. To make a contribution to that, the simulation tool BASEMENT (© ETH Zurich) 

was applied to a case study in order to examine its performance. 

Case Study Event

The case study comprises an extreme event in the Schnannerbach Torrent (Tyrol), which was 

intensively investigated and comprehensively documented concerning both, hydrologic 

(Chiari, 2008) and morphologic characteristics (Gems et al., 2014; Chiari, 2008; Hübl et al., 

2006; Figure 1); in these literature references the reader also finds a detailed overview of 

catchments characteristics.

 Summarizing, a heavy rain storm occurred in August 2005, which caused run-off generation 

and erosion along the steep scree slopes which are composed of lime stone rock and located 

in the upper catchment of the Schnannerbach Torrent. The total bedload that was transported 

to the fan apex was in the range of 36,000 m³ (Hübl et al., 2006) and 59,000 m³ (Gems et al., 

2014). However, about 25,000 m³ of sediment (volume including pores) deposited on the 

alluvial fan (Hübl et al., 2006), which means that up to 34,000 m³ of bedload has entered the 

receiving Rosanna River.

However, in this study the event reconstruction of Gems et al. (2014) is used as boundary 

condition for the numerical investigations. In their study, the sediment flux that entered the 

lined trench at the fan was reconstructed by determining the system’s capacity (critical load in 

the confluence zone and transport capacity of the Schnannerbach channel) by means of 
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physical scale modelling. The boundary conditions as highlighted in Figure 1 sufficiently 

reproduced the spatial and temporal location of the system failures (overbank flooding) that 

were observed during the event in 2005.

Model Extent 

The 2d numerical modelling tool BASEMENT (2006-2015) is used to simulate the hydraulics 

and the bedload transport of the considered flood event. Thereby, the numerical model covers 

the lower half of the alluvial fan of the Schnannerbach Torrent and extends over two 

kilometres of the receiving mountain stream (Rosanna River), with the confluence zone 

located in the middle (Figure 1). The computational grid of the modelling area (0.37 km²) is 

characterized by an unstructured mesh consisting of approx. 11,600 nodes which are either 

based on high resolution LiDAR data (floodplain) or bathymetric survey data (water courses). 

Summarizing, the alluvial fan features a mean gradient of 0.1 m/m and the channel is 

constructed as a lined trench with a sequence of small check dams (artificial steps) which 

prevents from channel bed erosion. The flow section of the artificial channel has a base and 

top width of approx. 5 m and 6 m and is on average 3 m deep. In contrast, the gradient of the 

receiving mountain stream is only 0.008 m/m and features a trapezoidal cross section with an 

average bed and top width of 16 m and 26 m, respectively. Although the geometrics of the 

Figure 1: The extent of the 2d model used for the simulation including the hydro- and sedigraphs at the upstream boundaries and the 
location of downstream boundaries which are defined by constant friction slopes; the purple points are used as spatial reference only. 
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channels and the floodplain are of high resolution, local structures crossing the channels 

(bridges) could not be considered. Hence, the model does not enable to simulate clogging of 

bridge cross sections with sediment due to pressurized flow, which had been observed during 

the prototype event (Gems et al., 2014). 

Except for the artificial steps and walls of the tributary channel, the water course of both, the 

Schnannerbach Torrent (tributary channel) and the Rosanna River (receiving mountain 

stream), was chosen to be mobile, allowing for river bed erosion. In addition, deposition and 

remobilization of bedload is considered within the entire computational domain.

Parameter Settings

The BASEMENT software simulates flow hydraulics by solving the shallow water equations 

that are commonly used to model a wide variety of physical phenomena (Vetsch et al., 2015). 

Next to the assumptions of a hydrostatic pressure distribution and steady-state resistance 

laws, this approach is only valid in case of small channel slopes (θ), with cos(θ)~1. The alluvial 

fan features a mean slope of 0.1 m/m, but the error is assumed to insignificantly influence the 

outcomes of this study. However, hydraulics in the overall steep and artificially stepped 

Schnannerbach Torrent are highly non uniform, with a permanent transition of super- and 

subcritical flow. Hence, solving the governing shallow water equations numerically might 

generate instabilities due to problems in convergence. In order to minimize these error 

sources, emphasis was put on (i) the specifications of parameters at the hydraulic boundaries 

(e.g. friction slope, weighting type) which were defined carefully by trial and error and (ii) a 

regularly distributed computation mesh consisting of triangular elements on the channel bed. 

As recommended by Vetsch et al. (2015), the element size was small in regions of abrupt 

changes in flow conditions, while it was coarse on the alluvial fan and the floodplain. 

Sensitivity tests confirmed the importance of these issues. 

A variety of flow resistance equations are available in BASEMENT. In this study, the approach 

of Manning-Strickler is used with spatially variable but temporally constant roughness scales 

(Strickler coefficients) of 23 m0.33s-1 for the channel bed of the Schnannerbach and 30 m0.33s-1 

for the Rosanna River. Thus, the friction attributed to the river bed does not differ in case the 

formerly bed surface is covered by deposited bedload, but its impact on flow hydraulics is 

assessed by changes of geometric patterns (e.g. the burial of the artificial steps causes the 

longitudinal profile to smooth).

Bedload transport is calculated according the Meyer-Peter and Mueller (1949) equation 

which is extended to a fractionized approach in BASEMENT (Vetsch et al., 2015).  

The mobility of single grain sizes is determined by the hiding function that assumes equal 

mobility of all fractions finer than the D40 (grain size for which 40 % are finer by weight) 

and size selective mobility for coarser ones. Therefore, the grain size distributions were 

determined separately regarding both, the source (bed sediment and bedload) and the stream 

(Schnannerbach torrent and Rosanna River).

In steep mountain streams, only a fraction of total shear stress is available for bedload 

transport. The form and spill drag around macro roughness elements, which are typically 
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present in steep streams, act as momentum sinks. However, there is no approach available in 

the simulation tool BASEMENT to account for momentum losses due to macro roughness 

elements. But the artificial steps of the tributary channel (Figure 1) have a similar effect on 

the shear stress. While the energy gradient (and hence the shear stress) is very large at a 

certain step, it is comparatively small along the mobile channel between two steps. Hence, 

form resistance is assumed to be adequately reproduced by the high resolution of the channel 

geometrics only, rather than by additional, empirical equations. 

Next to the bedload transport that originates due to flow hydraulics, BASEMENT provides an 

option to account for gravitational transport, which is primarily attributed to river bank 

failures. However, gravitational induced relocations of sediment might also appear during the 

formation of large deposit cones due to slope failures or shallow landslides on the downwards 

facing slopes (Zollinger, 1983). In order to activate gravitational transport in BASEMENT, 

three critical failure angles must be defined beforehand. These distinguish for dry or wetted 

embankments or deposited sediment and are set to 35 °, 20° and 10°, respectively.

RESULTS
Basically, the results of numerical simulations reveal the capability of a 2d hydrodynamic 

modelling tool to accurately reproduce field and laboratory observations (Figure 2). However, 

there are still some areas where modelling results do not correspond to the aerial photograph. 

For instance the areal extent of overbank sedimentation on the alluvial fan is too small 

(Figure 2a), while deposit heights are generally too large when compared to the event 

reconstruction of Hübl et al. (2006). The cause of these differences is mainly attributed to 

local structures (e.g. walls, railings, etc.) that are insufficiently included in the model. In this 

respect, overbank flow might had been laterally confined by these structures and thus, the 

flow’s competence to transport sediment was higher than calculated. Additionally, numerical 

simulations insufficiently reproduce the overbank sedimentation of the Rosanna River 

(Figure 2a), although all except of the most upstream part is flooded with water (Figure 2b). 

Probably, these sedimentations refer to suspended load which is not accounted for in the 

numerical simulations. 

Despite these uncertainties, the failure mechanisms can be assessed in more detail and the 

results enable an event history analysis regarding the processes of bedload aggradation and 

their feedback on hydraulics and flood risk. 

Within the first few hours of the event, artificial steps in the tributary channel were filled up 

and thus, the longitudinal profile was smoothed which minimizes form resistance and 

maximizes flow competence to transport bedload (Figure 3a and 3b). However, the bedload 

that passed the tributary channel initially accumulated in the confluence zone (Figures 3b 

and 3c). There, an abrupt change in bed gradient from 0.07 m/m at the lowermost reach on 

the alluvial fan to less than 0.01 m/m in the Rosanna River appears. Despite the fact, that 

water discharge in the receiving stream is almost 7 times larger, transport capacity is less than 

in the small Schnannerbach channel.
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Consequently, the entering bedload forms a deposit cone. Thereby, the level of the cone’s 

crest defines the downstream base level of the tributary channel which contributes to a 

decrease of slope with growing bedload accumulation in the confluence zone (Figure 3c).  

Figure 2: a) Magnitudes of deposition and erosion after the torrential hazard event (at the end of the simulation) and b) maximum flow 
depth of each node. The aerial photo (© Bundesamt für Eich- und Vermessungswesen) in the background of the figures shows the study 
area a few days after the extreme event (see also Figure 1 and Hübl et al., 2006).

Figure 3: Evolution of the bed level in the lowermost reach of the tributary channel at certain times (a-d) during the case study event 
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By that, the transport capacity decreases as well, resulting in severe channel bed aggradation 

(Figure 3d). Hence, bedload accumulation successively propagates against the flow direction 

of the tributary channel and the channel’s flow capacity decreases until it is insufficient to 

cope with the discharge from the tributary catchment. Due to overbank flooding on the 

alluvial fan, the channel’s transport capacity rapidly decreases once more with most of the 

entering sediment depositing on the alluvial fan. In addition, modelling results further 

highlight the impact on flow hydraulics in the upstream reach of the receiving stream. 

Backwater effects caused a dramatic increase of the water level which was accompanied with 

the flooding of agricultural areas nearby the receiving stream (Figure 2b). 

According to the boundary condition in the Schnannerbach Torrent (Figure 1), the sediment 

load diminished after about 14 hours (Figure 1). As a consequence, the water cuts into the 

sediment filled channel by remobilizing the accumulated bedload. Corresponding to eye 

witness observations of the event in August 2005, the lined trench of the tributary channel is 

almost free from sediment at the end of the simulation. It is worth to note that channel 

incision propagates forward, starting at the upstream end and thus, differs from aggradation. 

However, there remain large sediment accumulations on the alluvial fan and in the conflu-

ence zone (Figure 2). 

Although the transport capacity of the receiving stream is far less than the sediment input 

from the tributary catchment, a significant amount of bedload is transported further 

downstream during the event. According to the numerical simulations, this is accompanied 

with an obvious river bed aggradation downstream of the confluence zone leading to a 

reduction of flow capacity, followed by overbank flooding and sedimentation. According to 

Gems et al. (2014) about 15,400 m³ of bedload passed the downstream end of their physical 

scale model (120 m downstream of the confluence zone) within the first 10.5 hours of the 

event that properly matches with the simulation results (11,700 m³; Figure 4). In total, a 

considerable fraction (approx. 25,000 m³) of the entire sediment pulse that originated from 

Figure 4: Time series of a) bedload transport rate and b) accumulated bedload transport (volumes refer to solid volumes) at certain 
locations in the receiving Rosanna River
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the tributary channel (59,000 m³ according to Gems et al., 2014) is remobilized at the 

confluence zone during the event. But the propagation distance is limited to a few hundred 

meters (Figure 4) with severe river bed aggradation and overbank flooding in this region 

(Figure 2).

CONCLUSION
The application of a 2d hydrodynamic simulation tool is suitable to reproduce the complex 

interactions of bed morphology (aggradation / incision) and flow hydraulics present at a river 

confluence zone during an exceptional event in the tributary catchment. It is worth to note 

that simulation results properly matched with observations although most parameters 

referred to their default values.

Results reveal that the magnitude of bedload accumulation in the confluence zone majorly 

controls channel bed aggradation and overbank flooding in both, the tributary and the 

receiving stream; at least in this case study event. In terms of modelling, the growing rate of 

the deposit cone strongly depends on the angle of response of the deposited bedload, which 

was defined by 10°. However, there is a lack of knowledge regarding this parameter and thus, 

more emphasis is needed to evaluate the performance of 2d hydrodynamic modelling under 

different geometric configurations.
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