In this paper, to clarify the characteristics of landslides induced by reverse-fault and normal-fault earthquakes, two recent earthquakes are analyzed. One is the Iwate-Miyagi Inland earthquake (hereafter Iwate-Miyagi earthquake) occurred in 2008, which marked M_{JMA}7.2 and intensity of 6 upper in JMA scale. And another is the Fukushima Hamadori (hereafter Fukushima) earthquake occurred in 2011, marked M_{JMA}7.0 and intensity of 6 lower in JMA scale \[\text{JMA, 2011}\]. The parameters of the two earthquakes are listed in the Table 1.

In this study, the landslides induced by earthquakes were extracted from aerial photographs and the satellite images of Google Earth. The distance from source fault was calculated as the

Key words: earthquake-induced landslide, reverse fault, normal fault, peak ground acceleration
shortest distance between the central point of landslide and surface projection of source fault. The source faults were referred to Hikima et al., [2008] for the Iwate-Miyagi earthquake and GSI [2011] for the Fukushima earthquake, respectively. Since the Fukushima earthquake occurred on a complex fault system [Hikima, 2012; Fukushima et al., 2013], considering the south western dip of these normal faults, the eastern most Yunotake fault (see Fig.2b) was selected as the source fault to calculate the distance from landslide to source fault.

Table 1 Parameters of the two earthquakes involved in this study

<table>
<thead>
<tr>
<th>Name of Earthquake</th>
<th>Date (Local)</th>
<th>Epicenter Lat.</th>
<th>Epicenter Long.</th>
<th>M (JMA)</th>
<th>Depth (km)</th>
<th>Source Fault Strike</th>
<th>Dip</th>
<th>Type</th>
<th>Max Intensity (JMA)</th>
<th>PGA (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iwate-Miyagi</td>
<td>Jun.14, 2008</td>
<td>39°01.7’</td>
<td>140°52.8’</td>
<td>7.2</td>
<td>8</td>
<td>N21E-N11E</td>
<td>41NW</td>
<td>Reverse</td>
<td>6 upper</td>
<td>4022.1</td>
</tr>
<tr>
<td>Fukushima</td>
<td>Apr.12, 2011</td>
<td>36°54.7’</td>
<td>140°40.3’</td>
<td>7.0</td>
<td>6</td>
<td>N50W</td>
<td>SW</td>
<td>Normal</td>
<td>6 lower</td>
<td>745.8</td>
</tr>
</tbody>
</table>

2. REGIONAL SETTINGS

Study areas are shown in Fig. 1. The study area 1 is located in the north eastern Japan, where distances about 370 km north east from Tokyo. The study area 1, occupies about 1,042 km2, is around the source fault and focal area of the Iwate-Miyagi earthquake (see Fig. 2a).

The Study area 2 is also located in north eastern Japan and distances about 170 km north east from Tokyo. The study areas 2 occupies about 720 km2, is around the source fault and the focal area of the Fukushima earthquake (see Fig.2b).

The Iwate-Miyagi earthquake occurred on northwest dipping reverse fault [Hikima, 2008], while the Fukushima earthquake occurred on southwest dipping normal faults [Hikima, 2012; Fukushima et al., 2013] (Table 1).

2.1 Topographic setting

The study area 1 and its vicinities are included in the central part of the Ou Backbone range (Fig. 1). The elevation of hills and mountains in the study area ranges from about 300 to 1,600 m above sea level (Fig. 2a). The mountainous area was eroded by rivers and formed steep slopes. The study area 2 is located in the central to southern part of the Abukuma highland (Fig. 1). The hills, ranges from about 100 m to 800 m above sea level (Fig. 2b), are characterized by gentle slopes. Hills in the study area 2 are gentler than that in study area 1.

Fig. 3 shows slope angle distribution of the study areas and their surroundings. The slope angle is calculated from ASTER GDEM and the mesh size is 30 x 30 m. The study area 1 includes large number of steep slope meshes compared to that in the study area 2 (Fig.4).

2.2 Geological setting

Fig. 5 shows geological maps of the study areas. In the study area 1, the geology is mostly composed of volcanic rocks from Neogene to Quaternary. Sedimentary rocks of Neogene to Quaternary also occupy a small percent of the region. Compared to the study area 1, the study area 2 is mostly occupied by plutonic rocks and metamorphic rocks (Cretaceous) in the mountainous area. However, in the gentle hills, the geology is mostly composed of sedimentary rocks from Neogene to Quaternary.
Fig. 2 Elevation map (left) and red relief image map [right, Chiba et al., 2008] of the study areas. (a) Study area 1 (Iwate-Miyagi earthquake); (b) Study area 2 (Fukushima earthquake). Inside, black solid lines indicate, S.F: Shiodaira fault; I.F.: Idosawa fault; Y.F.: Yunotake fault. The distance from source fault to landslide refers to the Yunotake fault. Elevation map is made from ASTER GDEM 30 m mesh data (product of METI and NASA).

Fig. 3 Slope angle of study areas
Left: Iwate-Miyagi earthquake; Right: Fukushima earthquake. The slope angle is calculated from 30 m mesh ASTER GDEM.
Fig. 4. Distribution of slope angle mesh (30x30 m) in the study areas.

Fig. 5 Geological map of the study areas. Data from digital geological map of Geological Survey of Japan [2012].
(a) Iwate-Miyagi earthquake; (b) Fukushima earthquake
In legend, Q: Quaternary; N: Neogene; P: Paleogene; Mz: Mesozoic; Pz: Paleozoic.

Table 2 Inventory of earthquake-induced landslides

<table>
<thead>
<tr>
<th>Name of Earthquake</th>
<th>Area (km²)</th>
<th>Landslides</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total number</td>
<td>Hanging wall (number / %)</td>
<td>Foot wall (number / %)</td>
</tr>
<tr>
<td>Iwate-Miyagi</td>
<td>1042</td>
<td>810</td>
<td>741 (91.5%)</td>
<td>69 (8.5%)</td>
</tr>
<tr>
<td>Fukushima</td>
<td>720</td>
<td>17</td>
<td>13 (80.0%)</td>
<td>4 (20.0%)</td>
</tr>
</tbody>
</table>
3. CHARACTERISTICS OF EARTHQUAKE-INDUCED LANDSLIDES

The landslide induced by the two earthquakes were extracted from aerial photographs and the satellite images of Google Earth. The landslides inventory data are shown in Table 2. For these landslides, the characteristics of distribution as well as the dimensions with the distance from source fault were analyzed. Landslides distribution with the Peak Ground Acceleration (PGA) was also analyzed.

3.1 Spatial distribution of landslides

For both earthquakes, more than 80% of the landslides occurred on the hanging wall sides, although the numbers of landslides showed far different characteristic between them (Table 2, Fig. 2). Compared to the Fukushima earthquake, the Iwate-Miyagi earthquake induced about 48 times more number of landslides.

3.2 Landslides number and dimension with distance from source fault

Fig. 6 shows the relationship between the landslide size (area) and the distance from the source faults. The landslides induced by the Iwate-Miyagi earthquake distributed within 20 km from the source fault. Compared to the Iwate-Miyagi earthquake, the landslides induced by the Fukushima earthquake distributed only within about 7 km from the source fault. In the case of the Iwate-Miyagi earthquake, the landslides occurred in a larger area far from the source fault than that of the case of the Fukushima earthquake (Fig. 2). The results showed that compared to normal-fault earthquake, reverse-fault earthquake tends to induce landslides in a wider area far from source faults.

For both the reverse-fault and normal-fault earthquakes, the maximum size of landslides distributed on hanging wall sides was larger than that on the footwall. On the hanging wall, the largest landslide induced by the Iwate-Miyagi earthquake was about 2,000,000 m2 while the largest one induced by the Fukushima earthquake was about 34,000 m2. Compared to the normal-fault earthquake, the reverse-fault earthquake tends to induce large-scale landslides.

Fig. 7 shows the landslides frequency distribution with distance from the source faults. In the case of the Iwate-Miyagi earthquake, about 84% of the landslides occurred within 12 km from the source fault, and the number of landslides decreases with the distance increasing. For the Fukushima earthquake, more than half of total landslides occurred within 2 km from the source fault and the number decreases with distance increasing.

4. DISCUSSION

According to above results, landslides distribution shows similar characteristics in both reverse-fault and normal-fault type earthquakes. In both cases, most of the landslides occurred on the
hanging wall sides of the source faults. This characteristic was considered to be related to the PGA distribution feature of inland earthquakes known as the hanging wall effects [e.g. Abrahamson and Somerville, 1996; Shi et al., 2003; Chang et al., 2004]. However, in this study, the reverse-fault earthquake induced a large number of landslides, including large-scale ones compared to that of normal-fault earthquake. Also, compared to the normal-fault earthquake, the reverse-fault earthquake induced landslides in a longer distance from the source fault. These characteristics coincide with the difference of PGA distribution between reverse-fault and normal-fault earthquakes. Usually, in cases of similar magnitude earthquakes, the PGA of reverse fault earthquake is larger than that of normal-fault earthquake [McGarr, 1984; Abrahamson and Shedlock, 1997; Oglesby et al., 1998].

Fig. 8 shows the PGA distributions of the two earthquakes. In the case of the Iwate-Miyagi earthquake, the PGA in and around the study area was predominantly larger than that in the case of the Fukushima earthquake. The study area 1 was mostly occupied by volcanic rocks, but the study area 2 is mostly occupied by plutonic and metamorphic rocks in mountainous area. This different local geological distribution more or less influenced the landslide occurrence, but significant differences that role the occurrence of landslides is still unknown. Also, compared to the study area 2, the steeper slopes in study area 1 more or less influenced landslides occurrence. Future works are necessary for revealing the effects of local geological and geomorphological conditions on landslides occurrence by strong different fault type earthquakes.

About strike-slip fault earthquakes in the inland Japan, like the Kobe earthquake (M7.3, 1995) and the Western Tottori earthquake (M7.3, 2000), compared to reverse-fault earthquakes, induced very few or no large-scale landslides [Kubota, 2002], or the slope failures were usually very shallow.
These characteristics suggest that different type earthquakes may induce different distribution and size of landslides.

![Fig. 9 Particle motion of the PGA from stations on footwall (a, c) and hanging wall (b, d) of KiK-net and K-NET of NIED [2014]. Unit is gal. (a) Ichinoseki-Nishi, (b) Ichinoseki-Higashi (Iwate-Miyagi earthquake, see Fig. 2a); (c) Furudon, (d) Iwaki (Fukushima earthquake, see Fig. 2b).](image)

5. CONCLUSION

This paper compared the characteristics of landslides induced by two different type strong earthquakes, reverse-fault one represented by the Iwate-Miyagi inland earthquake and normal-fault one represented by the Fukushima earthquake occurred in eastern Japan. The results showed that there are some similarities and differences between reverse-fault and normal-fault earthquake-induced landslides in their distribution and size. For both reverse-fault and normal-fault earthquakes, most of the landslides occurred on hanging wall sides, and the size of landslides tend to be larger on the hanging wall than that on the footwall. However, compared to reverse-fault earthquake, normal-fault earthquake tends to induce fewer and smaller landslides. Without considering local geological and geomorphological conditions, all these characteristics seemed to be related with the PGA distribution features of vertical fault earthquakes.

The results suggested that the different fault-type inland earthquakes are possible to induce different characterized landslides under a similar earthquake magnitude. Future work is necessary for reveal the details of characteristics of landslides induced by different fault-type earthquakes, including strike-slip fault earthquake.

ACKNOWLEDGEMENT: The authors are grateful to Dr. Daimaru and two anonymous reviewers, for their constructive comments.

REFERENCES

GSI (Geospatial Survey Institute, Japan), Crustal deformation observed by synthetic aperture radar (SAR), http://www.gsi.go.jp/cais/topic110425-index.html (Last accessed on Feb. 5, 2014).

