CALCUL du DEBIT SOLIDE — Evaluation de la végétation comme un des facteurs antiérosifs

Introduction

Il y a quelques années qu'on a entrepris en Yougoslavie l'élaboration du projet général de l'économie des eaux, avec les plans prospectifs du développement complexe des régions. Parmi les autres données hydrologiques sur le régime des eaux ce projet demandait aussi le compte-rendu sur la situation actuelle et sur les tendances d'évolution des processus d'érosion dans les bassins-versants des affluents principaux de nos fleuves et rivières. Il s'agissait avant tout de l'évaluation des données quantitatives annuelles moyennes sur l'érosion et sur le débit solide transporté, aussi bien de celui qui se dépose dans les affluents mêmes, comme de celui qui afflue aux

Fig. 1: Une part de la Yougoslavie, Slovénie, traitée dans cet exposé
récipients. Dans ce but on s’est servi d’une méthode originale, mise au point par M. S. Gavrilović de Belgrade. Cependant, en Slovénie, on a cette méthode convenablement appropriée aux conditions qui dominent dans cette région, située au Nord-Ouest de la Yougoslavie. Ainsi, toutes les données, citées dans le présent exposé, ne touchent que cette région.

1. Données sur l’érosion et sur le débit solide

D’après les résultats obtenus, en Slovénie qui couvre environ 20.350 km², dont plus de trois quarts sur les pentes majeures de 5 % et presque la moitié assez bien peuplée par les forêts, le phénomène d’érosion provoque chaque année le déplacement d’environ 5,200.000 m³ des matériaux détritiques, soit environ 250 m³/km²/an. De cette quantité la majeure partie d’environ 60 % se dépose déjà dans les lits de ravin, sur les versants, sur les éboulis aux pieds des parois abrupts, sur les cônes de déjection etc., tandis que le reste de cca 2,000.000 m³/an afflue aux cours d’eau, qui le transportent vers trois récipients principaux: Soča, Sava et Drava. Ceux-la, poursuivant de leur côté cette action de transport, fournissent vers le Sud et vers le Sud-Est, en dehors des limites de Slovénie, environ 1,500.000 m³/an du débit solide au total, de quoi ne que cca 10 % de matériaux charriés, tout le reste en suspension.

Ici, il faut souligner qu’on n’insiste pas du tout sur l’exactitude de ces données, à l’exception des dernières chiffres cités qui résultent des jaugeages, exécutés par le service hydrométéorologique et par les hydrotechniciens. Néanmoins, on est persuadé que la différence possible de ± 20 % est acceptable, vu les besoins de la planification générale de l’économie des eaux et pour une illustration du problème que présente l’érosion avec tous les phénomènes accompagnants. Pour le moment on se contente déjà du fait-même que — même si les résultats obtenus ne sont qu’approximatifs — par ce travail méthodique, qui nous a fourni un tas de données de base desquelles on ne disposait jusqu’à présent, on est parvenu à fixer du moins les proportionnalités existantes entre les différents bassins torrentiels. A l’avenir cela pourra servir comme un des points de départ sur la voie de recherches de la mise au point d’une méthode plus exacte pour la classification quantitative de l’érosion, des bassins torrentiels et du calcul du débit solide.

2. Méthode utilisée

L’évaluation quantitative de l’érosion d’après la méthode GAVRILIOVIĆ est basée sur sa formule

\[W = T \cdot h \cdot \pi \cdot \sqrt{Z^3} \cdot F \]

(1)

où signifient:

- \(W \) ... production annuelle moyenne des matériaux solides par l’érosion, exprimée en m³/an

360
T ... coefficient de la température, calculé par formule:

\[T = \sqrt{\frac{t^0}{10}} + 0,1 \]

(2)

t\(^0\) ... isotherme annuelle moyenne dans le bassin-versant, en °C
h ... précipitations annuelles moyennes dans le bassin-versant, en mm
\(\pi\) ... 3,14159
F ... superficie du bassin-versant, en km\(^2\)

et l'essentiel de la méthode:

Z ... coefficient de l'érosion relative, calculé d'après:

\[Z = X \cdot Y \cdot (\varphi + \sqrt{I}) \]

(3)

où signifient:

X ... coefficient qui exprime le valeur de la protection du sol contre
l'érosion par la couverture végétale et dont les valeurs sont dans les limites
de 0,05 à 1,0 (voir les tableaux détaillés dans le chapitre 5)
Y ... coefficient d'érodibilité du sol, dépendant de la structure litholo-
gique et pédologique dans le bassin-versant, ses valeurs étant dans les
limites de 0,2 à 2,0 (voir le tableau raccourci en annexe)
\(\varphi\) ... coefficient qui exprime le type et degré des processus d'érosion
dans le bassin-versant (voir le tableau raccourci en annexe)
I ... pente moyenne de la surface du bassin-versant

En fait, la capacité de transport des cours d'eau récepteurs — surtout dans
leurs talwegs — n'est jamais aussi grande que les eaux pourraient emporter
la production entière des matériaux érodés. Un certain pourcentage s'en
dépose toujours déjà dans les talwegs à l'amont de l'embouchure, ainsi
que sur les élargissements et les atténuations de la pente longitudinale du
lit aussi. Par rapport à la production alors, l'afflux du débit solide est réduit.
Dans ce but l'auteur de la méthode utilise les formules suivantes:

\[G = W \cdot R \]

(4)

et

\[R = \frac{\sqrt{O \cdot D}}{0,25 \cdot (L + 10,0)} \]

(5)

où signifient:

G ... afflux du débit solide au récipient, en m\(^3\)/an
R ... facteur de réduction — coefficient d'ablation
O ... périmètre du bassin-versant, en km
D ... hauteur moyenne du bassin-versant, définie à l'aide d'une courbe
hypsoigraphique, en km
L ... longueur du bassin-versant suivant le talweg, en km.
3. Modifications de la méthode utilisée, appliquées en Slovénie

A peu près simultanément avec le commencement des travaux, dont il était dit à l'introduction du présent exposé, étaient en Slovénie terminées les recherches comparatives sur l'applicabilité pratique de deux méthodes différentes pour la classification des bassins torrentiels: de la méthode qualitative, proposée par le Groupe de Travail de la FAO pour la lutte contre l'érosion, et de la méthode quantitative GAVRILOVIC. Les recherches ont englobé 5 test-bassins torrentiels, typiques pour cette région, avec la superficie de 0,66 à 24,68 km². Les résultats obtenus, comparés avec les données des jaugeages (mentionnés en second alinéa du chapitre 1), ont incontestablement démontré que la méthode quantitative, d'ailleurs très réussie dans le Sud et le Sud-Est de la Yougoslavie, donne de valeurs trop élevées, du moins au point de vue du débit solide qui affleure aux récipients. Analyse rétrograde, partant de ces données, nous a mené d'abord à la diminution des valeurs du coefficient Y à moitié, c. à d. dans les limites de 0,1 à 1,0 (comparer le tableau de Y en annexe), et ensuite à l'adaptation du coefficient d'ablation R, en tenant compte de la densité du réseau hydrographique. Dans ce but on a éliminé du dénominateur le facteur 0,25, c. à d. qu'on a diminué 4 fois le valeur de la fraction, multipliée après par le valeur de la densité du réseau hydrographique. Ainsi, la formule du coefficient d'ablation a pris la forme suivante:

\[R = \frac{\sqrt{O \cdot D \cdot (L + L_1)}}{(L + 10,0) \cdot F} \]

(5)

où signifient:

- \(L_1 \) : longueur de toutes les branches latérales du même cours d'eau, en km
- \(F \) : superficie du bassin-versant traité, en km²

4. Carte de l'érosion

La méthode quantitative pour la classification des bassins torrentiels prévoit aussi l'élaboration d'une carte d'érosion en partant des valeurs du coefficient d'érosion \(Z \), obtenus pour chaque bassin-versant. De ces valeurs s'ensuit, d'après l'auteur de la méthode, la catégorisation suivante:

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Degré d'érosion</th>
<th>Valeur du (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Excessive</td>
<td>> 1,01</td>
</tr>
<tr>
<td>II</td>
<td>Intensive</td>
<td>0,71 - 1,00</td>
</tr>
<tr>
<td>III</td>
<td>Modérée</td>
<td>0,41 - 0,70</td>
</tr>
<tr>
<td>IV</td>
<td>Peu évoluée</td>
<td>0,20 - 0,40</td>
</tr>
<tr>
<td>V</td>
<td>Perceptible</td>
<td>< 0,19</td>
</tr>
</tbody>
</table>
Les différentes catégories peuvent être présentées sur la carte avec la graduation de l'intensité d'un couleur choisi (en Slovénie on utilisa le rouge). On est d'opinion que l'effet visuel de cette manière de présentation est bien plus instructif que si l'on utilisait de différents couleurs.

Traduction de la légende:

- vodotoki = les cours d'eau
- razvodnica = ligne de partage des eaux
- Stopnje erozije = degrés d'érosion
- I. poudarjena = excessive
- II. močna = intensive
- III. srednja = modérée
- IV. slaba = peu évoluée
- V. zelo slaba = perceptible

Fig. 2: Slovénie — carte de l'érosion
5. Végétation comme un des facteurs antiérosifs

On n’a pas l’intention d’énumérer de bienfaissants effets de la végétation, qui se reflètent sur le sol aussi au point de vue de l’érosion et qui sont déjà notoires, enfin, qui étaient le sujet de recherches connues de nombreux savants du monde entier. Comme il a été déjà noté, l’auteur de la présente méthode a aussi tenu compte de ce fait. Ainsi, il engloba en outre dans sa formule pour la détermination du valeur du coefficient d’érosion relative Z aussi un coefficient, qu’il l’appela X. Celui représente le degré d’aménagement du bassin-versant au point de vue de la protection du sol contre les influences atmosphériques et contre l’érosion, qu’il soit en raison des conditions naturelles, de la végétation, ou bien des conditions d’origine artificielle, c. à d. des travaux techniques ou biotechniques contre le développement des processus d’érosion et des phénomènes torrentiels. Bref, on peut dire qu’il s’agit essentiellement de la valorisation de l’influence, effectuée par couverture végétale de n’importe quelle origine contre les phénomènes d’érosion. Essai d’exprimer mathématiquement cette influence ou, plus exactement, son importance relative, c’est le sujet du ce chapitre.

L’auteur de la méthode a établi un tableau pour la détermination du valeur du coefficient X, d’après lequel on peut évaluer sa grandeur pour chaque partie spécifique du bassin-versant traité. En pondérant ces grandeurs on obtient pour le bassin entier le valeur moyen du coefficient de la protection végétale du sol X. Ce valeur figure après dans la formule (3) pour le calcul du coefficient de l’érosion relative Z.

Ici il faut ajouter que, dans sa forme tout à fait originale, l’auteur de la méthode comprend ce coefficient comme la multiplication de deux coefficients: de X, déjà connu, et de „a“, exprimant le degré d’aménagement artificiel contre-érosif de la surface traitée, les valeurs duquel sont dans les limites de 0,1 à 0,7. Ainsi figurent tous les deux coefficients et leur multiplication „X, a“ dans la formule et dans le tableau original. On était d’opinion que pour le présent exposé suffit la forme simplifiée.

Le tableau des valeurs du coefficient de la protection végétale du sol X est alors:

<table>
<thead>
<tr>
<th>Conditions qui influencent les valeurs du coefficient</th>
<th>Valeur moyen X</th>
</tr>
</thead>
<tbody>
<tr>
<td>I BASSIN-VERSANT OU LA SURFACE TRAITÉE</td>
<td></td>
</tr>
<tr>
<td>AVANT DE TRAVAUX CONTRE L’ÉROSION:</td>
<td></td>
</tr>
<tr>
<td>Terrain entièrement dénudé, incultivable</td>
<td>1,00</td>
</tr>
<tr>
<td>Champs, labournés suivant la pente</td>
<td>0,90</td>
</tr>
<tr>
<td>Vergers et vignobles sans végétation au sol</td>
<td>0,70</td>
</tr>
<tr>
<td>Alpages, forêts dégradées et broussailles avec le sol érodé</td>
<td>0,60</td>
</tr>
<tr>
<td>Prairies, champs de trèfle et d’autres cultures semblables</td>
<td>0,40</td>
</tr>
<tr>
<td>Forêts ou broussailles denses et de bonne structure</td>
<td>0,05</td>
</tr>
<tr>
<td>Conditions qui influencent les valeurs du coefficient</td>
<td>Valeur moyen X</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Aménagement des lits, barrages, corrections</td>
<td>0,70</td>
</tr>
<tr>
<td>Champs, labourés suivant les isohyphys</td>
<td>0,63</td>
</tr>
<tr>
<td>Champs bien cultivés, fertilisés par le mulch</td>
<td>0,54</td>
</tr>
<tr>
<td>Champs, labourés en bandes horizontales (strip-cropping) et assolés</td>
<td>0,45</td>
</tr>
<tr>
<td>Champs en terrasses, banquettes ou gradonis</td>
<td>0,36</td>
</tr>
<tr>
<td>Vergers et vignobles suivant les isohyphys</td>
<td>0,32</td>
</tr>
<tr>
<td>Gazonnement de terres dénudées, améliorations des alpages et des prés</td>
<td>0,30</td>
</tr>
<tr>
<td>Canaux de retardation, micro-retenues d'eau</td>
<td>0,27</td>
</tr>
<tr>
<td>Réseau des canaux suivant les isohyphys, de densité moyenne</td>
<td>0,24</td>
</tr>
<tr>
<td>Reboisement, accompagné par gradonis</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Or, une élaboration menée strictement selon ce tableau, exigeait bien beaucoup du temps que l'on ne disposa pas au moment où nos travaux commencèrent. De plus, le devoir posé ne demandait de traiter que de régions soupçonnées ou connues du caractère torrentiel, c. à d. surtout dans le relief accentué. Ainsi, tenant compte aussi des conditions spécifiques qui sont d'ailleurs assez semblables dans toutes les régions des Alpes européennes, on simplifia d'abord ce tableau en partageant ses valeurs en 5 classes, ensuite on apporta le sujet de ces classes aux conditions en Slovénie*. Le tableau a pris alors la forme suivante:

<table>
<thead>
<tr>
<th>Type de la couverture végétale</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forêts mixtes et broussailles denses, forêts claires avec sous-bois</td>
<td>0,05 — 0,20</td>
</tr>
<tr>
<td>Forêts résineuses avec sous-bois faible, broussailles claires, prés bocagères</td>
<td>0,20 — 0,40</td>
</tr>
<tr>
<td>Forêts et broussailles dégradées, pâturages</td>
<td>0,40 — 0,60</td>
</tr>
<tr>
<td>Pâturages et terres cultivées dégradés</td>
<td>0,60 — 0,80</td>
</tr>
<tr>
<td>Surfaces sans couverture végétale</td>
<td>0,80 — 1,00</td>
</tr>
</tbody>
</table>

L'élaboration du projet a fourni toute une gamme de données, obtenues systématiquement pour chacun des facteurs, figurant dans la méthode. Tous d'eux étant variables, on peut exprimer leur importance relative par le calcul différentiel et ainsi, après une programmation correspondante pour le

* Le procédé identique était utilisé aussi pour les deux autres tableaux: du coef. Y et du coef. χ (voir en annexe).
calculateur électronique basée sur les données obtenues, aussi l'importance absolue. Puisque pour le moment on n'est pas encore aussi loin d'en savoir le dernier, il suffira de connaître la relative.

D'abord il faut venir sur un dénominateur commun. Dans ce but on ne prend en considération que la production annuelle moyenne spécifique \(W_s \), exprimée en m³/km²/an, c. à d. qu'on élimine de la formule (1) la superficie \(F \). Etant constant, on peut négliger dans la formule aussi le \(\pi \). Ensuite, pour simplifier l'opération mathématique entière, on substituera la somme \((\varphi + V \cdot I) \) de la formule (3) avec un coefficient \(\alpha \). Ainsi, tenant compte des deux formules, on voit que la production annuelle spécifique est surtout la fonction de 5 variables:

\[
W_s = W_s(T, h, x, y, \alpha) = T \cdot h \cdot \sqrt{X^3 \cdot Y^3 \cdot \alpha^3}
\]

(6)

Après le différentiel total

\[
dW_s = \frac{\partial W_s}{\partial T} \cdot dT + \frac{\partial W_s}{\partial h} \cdot dh + \frac{\partial W_s}{\partial x} \cdot dx + \frac{\partial W_s}{\partial y} \cdot dy + \frac{\partial W_s}{\partial \alpha} \cdot d\alpha
\]

(7)

et après les observations isolés des différentiels partiels, on obtient

\[
\frac{\Delta W_s}{W_s} = \frac{\Delta T}{T} + \frac{\Delta h}{h} + \frac{3}{2} \frac{\Delta x}{x} + \frac{3}{2} \frac{\Delta y}{y} + \frac{3}{2} \frac{\Delta \alpha}{\alpha}
\]

(8)

Si l'on considère le facteur végétation isolément d'après le même procédé

\[
\frac{\partial W_s}{\partial x} = \frac{3}{2} \cdot \frac{W_s}{x}
\]

et puis

\[
\Delta_x W_s \approx \frac{3}{2} \cdot \frac{W_s}{x} \cdot \Delta x
\]

on obtient le troisième terme de l'équation (8)

\[
\frac{\Delta_x W_s}{W_s} \approx \frac{3}{2} \cdot \frac{\Delta x}{x}
\]

(9)

c. à d. que, par rapport aux \(T \) et \(h \), exprimant le climat, la production annuelle moyenne spécifique de l'érosion dépend presque 1,5-fois de la couverture végétale, de l'origine du sol et du sous-sol et de la fonction mutuelle du relief et du type et degré d'érosion. Ce soit alors l'évaluation mathématique de l'importance relative des facteurs qui influencent le développement des processus d'érosion.
Considérons maintenant encore une fois le facteur végétation isolément, sous la lumière des chiffres réels des résultats obtenus pendant l’élaboration du projet:

Au premier alinéa du chapitre 1 était déjà mentionné que Slovénie entière est divisée en trois bassins principaux: du fleuve Soča avec d’autres tributaires littoraux et des rivières Sava et Drava avec son affluent Mura (voir la carte hydrographique). Ne considérant que les régions exactement traitées, c. à d. soupçonnées ou connues du caractère torrentiel, en somme une superficie de 8217 km², on peut établir le tableau suivant, qui démontre la répartition relative des surfaces dénudées ou incultivables et sous la végétation forestière, et la production annuelle spécifique moyenne, minimale et maximale, dans les trois bassins:

<table>
<thead>
<tr>
<th>Bassin</th>
<th>Forêt %</th>
<th>Sans végétation %</th>
<th>W_s m³/km²/an</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>moyenne</td>
</tr>
<tr>
<td>Soča</td>
<td>54,7</td>
<td>13,9</td>
<td>425</td>
</tr>
<tr>
<td>Sava</td>
<td>67,2</td>
<td>11,3</td>
<td>250</td>
</tr>
<tr>
<td>Drava</td>
<td>73,2</td>
<td>8,7</td>
<td>181</td>
</tr>
</tbody>
</table>

On peut nettement apercevoir qu’avec l’accroissement du taux de la couverture végétale diminue la production annuelle des matériaux érodés, qu’elle soit moyenne, minimale ou maximale, à une seule exception de celle-ci, qui n’est pas du tout intéressante, puisque les maximums se trouvent dans les hautes montagnes, où le taux des surfaces sans végétation dépasse souvent 45—50%. Alors, ce n’est pas peut-être une preuve tout à fait exacte, mais cela confirme quand-même dans une certaine mesure aussi le résultat de l’analyse mathématique.

6. Objections et conclusions

Si l’on essaye d’examiner soigneusement la méthode utilisée, qu’elle soit originale ou appropriée, on ne peut pas éviter de faire quelques objections et même reproches. D’abord, il ne manque pas du facteur subjectivité, tant au point de vue d’estimation du coefficient du type et degré d’érosion visible φ, qu’au point de vue des critères sur les branches latérales, qui peuvent encore entrer en considération pour la détermination du L_1 pour la formule (5'). De reproches semblables peut on faire aussi au point de vue des coefficients X et Y (protection végétale et érodibilité du sol), c. à d. que l’estimation d’après les tableaux permet aussi d’écarts tout à fait subjectifs.

Or, dans la situation d’empressement qu’on s’est trouvé, et partant des données incontestées de jaugeages, il fallait se fier au travail systématique et consciencieux des élaborateurs, secourus par les praticiens qui connaissent très bien les conditions au terrain et qui sont aussi bien versés dans la
lutte contre l'érosion et dans les corrections de torrents. Ainsi on espère qu'on a réussi à diminuer fortement le facteur subjectivité, ce que nous affirment les résultats obtenus, assez acceptables d'après l'opinion générale de nos experts dans les domaines de l'économie des eaux et de la lutte contre l'érosion.

Ensuite, les formules de (1) à (5), resp. (5'), ne peuvent être appliquées qu'aux bassins-versants de moindres étendues. Le résultat, obtenu en les appliquant sur un bassin grand qui englobe plusieurs petits, est en général très dépassé par la somme des résultats de ceux-ci. C'est ainsi qu'il faut comprendre les données citées au chapitre 1, c. à d. comme le sommaire des résultats, obtenus par l'élaboration d'environ 370 bassins-versants, dont les superficies étaient généralement dans les limites entre 0,25 et 85,00 km², à quelques exceptions près.

Certes, c'est assez logique, mais cela démontre de nouveau l'importance du fait, qu'il n'existe pas à présent une méthode, application de laquelle pourrait-on généraliser pardessus toutes les limites.

Valeurs du facteur d'érodibilite du sol „Y“

<table>
<thead>
<tr>
<th>Type de la roche — sous-sol</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roches dures, résistantes à l'érosion</td>
<td>0,2—0,6</td>
</tr>
<tr>
<td>Roches mi-résistantes à l'érosion</td>
<td>0,6—1,0</td>
</tr>
<tr>
<td>Roches friable, stabilisées (éboulis, schistes, argiles compactes, etc.)</td>
<td>1,0—1,3</td>
</tr>
<tr>
<td>Sédiments, moraines, argiles et autres roches peu résistantes</td>
<td>1,3—1,8</td>
</tr>
<tr>
<td>Sédiments fins et terres, non résistantes à l'érosion</td>
<td>1,8—2,0</td>
</tr>
</tbody>
</table>

Note: Comme il a été mentionné au chapitre 3, ce tableau était approprié ainsi qu'on a dédoublé tous les valeurs d'Y.

Valeurs du facteur „φ“, exprimant les processus d'érosion visibles

<table>
<thead>
<tr>
<th>Type et degré d'érosion dans le bassin-versant</th>
<th>φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion faible dans le bassin</td>
<td>0,1—0,2</td>
</tr>
<tr>
<td>Erosion en nappes sur 20—50 % du bassin</td>
<td>0,3—0,5</td>
</tr>
<tr>
<td>Erosion en nappes, éboulis et dépôts ravinés, l'érosion karstique</td>
<td>0,6—0,7</td>
</tr>
<tr>
<td>50—80 % du bassin érodés par affouillements et éboulements</td>
<td>0,8—0,9</td>
</tr>
<tr>
<td>Bassin entièrement érodé par affouillements et éboulements</td>
<td>1,0</td>
</tr>
</tbody>
</table>
Zusammenfassung

In weiterer Folge wird eine mathematische Wertung des Einflusses der Vegetationsdecke auf die Erosionsprozesse versucht. Es wird gezeigt, daß sich der Einfluß der Vegetation, des Bodens und des Reliefs im Vergleich zu den klimatischen Faktoren durch das Verhältnis 1,5:1 ausdrücken läßt. Aus der Übersicht des spezifischen Bodenabtrages in verschiedenen bewachsenen Flächen der wichtigsten Einzugsgebiete in Slowenien geht die Bedeutung der Waldanteile klar hervor.

Vor einer allgemeinen Anwendung dieser Methode in anderen Gebieten ohne vorhergehende gründliche Untersuchungen wird jedoch gewarnt.

Bibliographie

FERLINC, B., TANCIK, R.: Orientacijska tipološko-pedološka karta Slovenije — z izotermami. 1 : 300.000, Ljubljana, 1948
(Carte d’orientation typologique-pédologique de Slovénie — avec les isothermes)

(Les précipitations en Slovénie)

FURLAN, D.: Padavinska karta Slovenije. 1 : 300.000, 1925-40, Ljubljana, 1948
(Carte des précipitations en Slovénie)

(Méthode de la classification des bassins torrentiels et équations nouvelles pour le calcul des hautes eaux et du débit solide)

(Calcul de la quantité annuelle moyenne des alluvions d’après la potentialité d’érosion)

(Evaluation du régime d’alluvions du bassin torrentiel et l’élaboration de la carte d’érosion)

370
GAVRILOVIC, S.: Predlog sadržaja i metodike za izradu bujičarsko-erozionog elabo-
(Proposition du contenu et de la méthodologie pour l’élaboration d’un compte-
rendu sur l’érosion et les torrents, pour le projet général d’économie des eaux
de Yougoslavie)

MARGAROPOULOS, P.: Rapport sur la classification des bassins torrentiels (Texte
final). Doc. FAO-EFC/TORR/64/2, avril 1964

MUNTEANU, S., COSTIN, A., MECOTA, TR.: Commentaires généraux sur le problème

PINTAR, J.: Začasne smernice za sestavo vodnogospodarskih podlog s področja
dactylo, 10 tabl., 5 schémas, 21 phot.).
(Instructions provisoires pour l’élaboration de données du domaine „Erosion
du sol — Torrents — Glissements — Lavines“, comme une des bases pour le
projet général de l’économie des eaux)

RAINER, F.: Evaluation de données quantitatives sur l’érosion et débit solide dans
le bassin de la rivière Sava — Information sur l’essai exécuté 1969 en Yougos-
славие. Rapport pour la 9ème Session de la FAO-Torr./Groupe de Travail
(6 p. dactylo-), Ljubljana, 1970

ZEMLJIC, M.: Predlog za izradu i proveru kvalitativne klasifikacije bujičnih slivova sa
prirodnim pokazateljima (prema zaključcima FAO-Radne grupe), sa detaljnim
uputstvima za njenu primenu. Ljubljana, 1965 (14 p. dact.) (Proposition pour la
mise à l’épreuve de la classification qualitative des bassins torrentiels — d’après
les conclusions du Groupe de Travail de la FAO —, avec mode d’emploi détaillé
pour son application)

ZEMLJIC, M.: Note sur la classification des bassins torrentiels — Recherches compara-
tratives en Yougoslavie. (Pour la 9ème Session du FAO/TORR-Groupe de Travail
à Munich), Ljubljana, 1970 (6 p. dactylo-xerox)

ZEMLJIC, M.: L’érosion dans les bassins de Slovénie. (Exposé pour le International
Water Erosion Symposium à Praha, CSSR, 1970), Ljubljana, 1970 (13 p. dactylo-
xerox)

ZEMLJIC, M.: Stanje, problemi in ukrepi proti eroziji tal na območju SRS. Ljubljana,
1970 (25 p. dactylo-xerox) (Conditions, problèmes et mesures contre l’érosion
du sol sur le territoire de la Slovénie) — (Compte-rendu final pour le Sécrétariat
fédéral pour l’économie)

ZEMLJIC, M.: Erozija in plavine v povodju Save na območju Slovenije. Ljubljana,
1969
Erozija in plavine v povodju Soče in drugih jadranskih pritokov. Ljubljana, 1970
Erozija in plavine v povodju Drave in Pomurja. Ljubljana, 1970
(Trois comptes-rendus, intitulés „Erosion et débit solide“, élaborés pour les 3
bassins principaux de Slovénie.)