daß sich die Aufwendungen für den Hochwasserschutz auch vom wirtschaftlichen Gesichtspunkt aus sehr wohl lohnen.

Zusammenfassung

Protection of settlements against high floods. Summary.

Settlements in mountains-valleys are endangered in bottom of valley by high water, on alluvial cones of torrents by stones and earth transported by water and on slopes by landslip. Sliding slopes will be consolidated by drainage and planting. On alluvial cones the course of torrent has to be fixed by regulation buildings. Rubble must be retained near origin and in canyon tract. Settlements situated in bottom of valley may be protected by dams. Unsettled areas in bottom of valley must be reserved to retention of floods, as in high mountains on account of the geological situation retention of floods near the origin-areas mostly is not possible. Dislocation of riverbed and streaming along the valley in retention-areas must be hindered. Drained soil may retain more water then marshy ground.

Friedrich L auscher, Wien

Globale und alpine Klimatologie der Starkregen

Der mittlere Wasserdampfgehalt der Atmosphäre entspricht einem Niederschlagswert von 26,2 mm. Würde also durch ein äußeres Ereignis auf der ganzen Erde gleichzeitig eine gewaltige Abkühlung eintreten, so könnte im Mittel keine höhere als die genannte Niederschlagsmenge ausfallen. Eine Wiederholung dieses Ereignisses wäre erst nach fast 10 Tagen möglich, denn so lange müßte die Verdunstung wirken, bis sich der Wasserdampfgehalt der Luft wieder regenerieren hätte. Eine Sintflut globalen Ausmaßes ist also gar nicht möglich.

R. D. Fletcher gab folgende Formel — von uns in europäische Maßeinheiten umgerechnet — für Weltkord-Niederschlagsmengen (N in mm) bestimmter Dauer (D in Stunden) und bestimmten Flächenausmaßes (F in km²) an:

\[N = \sqrt{D \left(12,7 + \frac{10873,1}{30,9 + \sqrt{F}}\right)} \]

Für einen „Punktniederschlag“, also einen ganz lokalen Platzregen mit \(F = 0 \) (üblicherweise \(F = 10 \text{ km}^2 \)) von einer Stunde Dauer erhält man einen
Weltrekordwert von 365 mm, für einen 1-Minuten-Regen 47 mm, für einen 24-Stunden-Regen 1787 mm.

Die tatsächlich beobachteten Extreme waren 31,2 mm in einer Minute am 4. Juli 1956 in Unionsville (Maryland, USA) sowie 1168 mm in einem Tag, am 14. Juli 1911 in Baguio (Philippinen) während eines viertägigen Tafuns, der insgesamt 2239 mm auf den Regenmesser herunterprasseln ließ.

Auch die flächenhafte Erfassung eines Starkniederschlags bleibt meist fraglich, es sei denn, er wäre im Gebiete eines dichten städtischen Meßnetzes niedergegangen. In den USA sind viele Analysen von Starkregen („storms“) nach den sogenannten Depth-Duration-Area-Werten (DDA) gemacht worden. Einer Zusammenfassung entnehmen wir z. B. die folgenden Höchstwerte in mm:

Niederschlag in mm (Flächenmittel, Depth, D) in Abhängigkeit von Ausdehnung und Dauer, Rekordwerte in den USA

<table>
<thead>
<tr>
<th>Fläche (Area, A)</th>
<th>10</th>
<th>1000</th>
<th>10.000</th>
<th>50.000 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer (Duration, D)</td>
<td>6 Stunden</td>
<td>627</td>
<td>230</td>
<td>94</td>
</tr>
<tr>
<td>24 Stunden</td>
<td>927</td>
<td>440</td>
<td>218</td>
<td>90</td>
</tr>
<tr>
<td>72 Stunden</td>
<td>955</td>
<td>705</td>
<td>403</td>
<td>200</td>
</tr>
</tbody>
</table>

Ein Rekordereignis von einem Tag Dauer brachte also bei Beschränkung auf ein Areal von 1000 km² im Mittel über diese Fläche 440 mm Niederschlag, bei Erstreckung über 50.000 km² im Mittel 90 mm.

Die wenigen in Österreich bisher gemachten DDA-Bestimmungen zeigen ähnliche Gesetzmäßigkeiten, aber es sind ihrer eben noch zu wenige, um endgültige Aussagen zu gestatten.

Wir können zur Frage der räumlichen Erstreckung von Starkregen der zuvor erwähnten Formel von Fletcher auch die folgende Form geben:
a) \(N_0 = 365 \sqrt{D} \) für „Punktweltrekorde“

\[
\frac{N}{N_0} = \frac{0.0348 + 0.9652}{1 + \frac{V}{954.8}} \quad \text{für die Abhängigkeit von } F \text{ (in km}^2)\]

Beispielsweise findet man für \(N : N_0 \) bei einer Ausdehnung des Niederschlagsfeldes auf 1000 km\(^2\) einen Wert von ungefähr \(\frac{1}{2} \).

Eventuell können wir für Abschätzungszzwecke auch die vereinfachte Form verwenden:

\[
\frac{N}{N_0} = \frac{1}{1 + \frac{V}{1000}}
\]

Die Fletcher-Formel gibt auch eine Bestätigung dafür, daß ein etwa vier Tage andauernder Landregen der praktischen Erfahrung gemäß eine etwa doppelt so große Gesammtenge bringt als die maximale Tagesmenge, die ja am häufigsten berichtet und publiziert wird.

Eduard Kirwald, Freiburg i. Br.

Wasserhaushaltsstechnik als Grundlage des Hochwasserschutzes

Punkt 2: Es gibt relative Sicherheiten gegen Hochwasserschäden und gegen Hochwasser an sich. Sie sind aber an menschliche Werke gebunden und diese sind wieder abhängig von der Geologie, Morphologie usw. Es sind dies künstliche Maßnahmen in Form von Wasserstau-Becken zum Hochwasserschutz oder Talsperren und Eindeichungen. Aber auch bei diesen künstlichen Hochwasserschutzwerken, die tatsächlich in hohem Maße wirksam sind, ist es notwendig, sich nicht nur auf den Ort zu beschränken, wo das Wasser gestaut oder umgelenkt wird, also nicht auf den Damm oder die Mauern selbst und das Becken, sondern, man muß sich auch hier bewußt bleiben, daß die Vorgänge in den Becken Resultierende vieler verschiedenster Zustände und Vorgänge in ihren Einzugsgebieten sind. Unsere Maßnahmen müssen sich deshalb auf die ganzen Einzugsgebiete erstrecken, also auf die Gebiete von den Wasserscheiden beginnend, wo die Wasserspiegeln anfallen, bis hin zu den Dämmen. Aber auch die Werke sollen zu Bestandteilen der Landschaften gemacht, also eingebunden werden. Punkt 3 betrifft alle jene Maßnahmen, die notwendig sind zur Beeinflussung der ganzen Landschaft, der ganzen Einzugsgebiete, in denen etwas geplant und ausgeführt werden soll, um die Verhältnisse in unserem Sinne zu verbessern. Wir müssen alle Vorgänge und Tätigkeiten räumlich